Uma análise bibliométrica sobre eletrolise PEM ou alcalina para a produção de hidrogênio baseada na Scopus
Resumo
O hidrogênio verde tem se tornado o centro das atenções no cenário mundial uma vez que permite a obtenção de calor, para diversos fins, sem a geração de gases indesejáveis. Logo, cada vez mais estudos estão relacionados a este tema haja vista são muitos os desafios da produção verde e da forma e meios de uso. Para a produção desse hidrogênio, uma técnica necessária é a eletrolise da água que pode ocorrer pelo método PEM ou alcalino. Este artigo busca avaliar as tendências das publicações na área da eletrólise PEM ou alcalina para a produção do hidrogênio a fim de fazer essa análise no espectro das publicações voltado tanto para o contexto mundial quanto para o contexto nacional, sendo possível analisar os artigos com mais citações, as instituições mais relevantes, que países vêm trabalhando na área, quais revistas produzem sobre este assunto, além de observar que lacunas precisam ser mais preenchidas com estudos e pesquisas. Para tal finalidade, fez-se uso da base Scopus considerando algumas palavras chaves, como ("alkaline electrolysis" or "electrolysis alkaline" or "PEM electrolysis" or "electrolysis PEM" and "hydrogen") e, posteriormente, foi feita análise dos dados dos documentos encontrados no Bibliometrix. O objetivo do presente trabalho trata de identificar a evolução do tema e mostrar a posição do Brasil no cenário mundial.
Downloads
Referências
ABDIN, Z. et al. Hydrogen as an energy vector. Renewable and Sustainable Energy Reviews, v. 120, p. 109620, mar. 2020.
AHMADI, P.; DINCER, I.; ROSEN, M. A. Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis. International Journal of Hydrogen Energy, v. 38, n. 4, p. 1795–1805, fev. 2013.
APARECIDA DA SILVEIRA ROSSI, R. et al. Solar assisted catalytic thermochemical processes: pyrolysis and hydropyrolysis of Chlamydomonas reinhardtii microalgae. Renewable Energy, v. 170, p. 669–682, jun. 2021.
ARIA, M.; CUCCURULLO, C. bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, v. 11, n. 4, p. 959–975, nov. 2017.
AUREILLE, R.; POTTIER, J. Projects for industrial development of advanced alkaline electrolysers in France. International Journal of Hydrogen Energy, v. 9, n. 3, p. 183–186, 1984.
BAILLEUX, C. Advanced water alkaline electrolysis: a two-year running of a test plant. International Journal of Hydrogen Energy, v. 6, n. 5, p. 461–471, 1981.
BARBIR, F. PEM electrolysis for production of hydrogen from renewable energy sources. Solar Energy, v. 78, n. 5, p. 661–669, maio 2005a.
BARBIR, F. PEM electrolysis for production of hydrogen from renewable energy sources. Solar Energy, v. 78, n. 5, p. 661–669, maio 2005b.
BORNMANN, L.; DANIEL, H.-D. What do we know about theh index? Journal of the American Society for Information Science and Technology, v. 58, n. 9, p. 1381–1385, jul. 2007.
CALNAN, S. et al. Development of Various Photovoltaic‐Driven Water Electrolysis Technologies for Green Solar Hydrogen Generation. Solar RRL, v. 6, n. 5, p. 2100479, 22 maio 2022.
CARMO, M. et al. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, v. 38, n. 12, p. 4901–4934, abr. 2013.
CORRIGAN, D. A. The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes. Journal of The Electrochemical Society, v. 134, n. 2, p. 377–384, 1 fev. 1987a.
CORRIGAN, D. A. The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes. Journal of The Electrochemical Society, v. 134, n. 2, p. 377–384, 1 fev. 1987b.
DAVID, M.; OCAMPO-MARTÍNEZ, C.; SÁNCHEZ-PEÑA, R. Advances in alkaline water electrolyzers: A review. Journal of Energy Storage, v. 23, p. 392–403, jun. 2019.
DE FÁTIMA PALHARES, D. D.; VIEIRA, L. G. M.; DAMASCENO, J. J. R. Hydrogen production by a low-cost electrolyzer developed through the combination of alkaline water electrolysis and solar energy use. International Journal of Hydrogen Energy, v. 43, n. 9, p. 4265–4275, mar. 2018.
DONTHU, N. et al. How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, v. 133, p. 285–296, set. 2021.
GAMBETTA, F. Análise técnica e econômica de retificadores de corrente para produção de hidrogênio eletrolítico. Campinas: Universidade Estadual de Campinas, 23 fev. 2010.
GERLOFF, N. Levelized and environmental costs of power-to-gas generation in Germany. International Journal of Hydrogen Energy, v. 48, n. 49, p. 18541–18556, jun. 2023.
GHAZINOORY, S.; AMERI, F.; FARNOODI, S. An application of the text mining approach to select technology centers of excellence. Technological Forecasting and Social Change, v. 80, n. 5, p. 918–931, jun. 2013.
HALL, D. E. Electrodes for Alkaline Water Electrolysis. Journal of The Electrochemical Society, v. 128, n. 4, p. 740–746, 1 abr. 1981.
ITO, H. et al. Properties of Nafion membranes under PEM water electrolysis conditions. International Journal of Hydrogen Energy, v. 36, n. 17, p. 10527–10540, ago. 2011.
KAR, S. K.; HARICHANDAN, S.; ROY, B. Bibliometric analysis of the research on hydrogen economy: An analysis of current findings and roadmap ahead. International Journal of Hydrogen Energy, v. 47, n. 20, p. 10803–10824, mar. 2022.
LAENGLE, S. et al. Forty years of the European Journal of Operational Research: A bibliometric overview. European Journal of Operational Research, v. 262, n. 3, p. 803–816, nov. 2017.
LASKIN, J. Recent development of large electrolytic hydrogen generators. International Journal of Hydrogen Energy, v. 3, n. 3, p. 311–320, 1978.
LEROY, R. Industrial water electrolysis: Present and future. International Journal of Hydrogen Energy, v. 8, n. 6, p. 401–417, 1983.
LI, Y.; ZHAO, C. Iron-Doped Nickel Phosphate as Synergistic Electrocatalyst for Water Oxidation. Chemistry of Materials, v. 28, n. 16, p. 5659–5666, 23 ago. 2016.
MAMACA, N. et al. Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction. Applied Catalysis B: Environmental, v. 111–112, p. 376–380, jan. 2012.
MARINI, S. et al. Advanced alkaline water electrolysis. Electrochimica Acta, v. 82, p. 384–391, nov. 2012.
MILLER, H. A. et al. Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions. Sustainable Energy & Fuels, v. 4, n. 5, p. 2114–2133, 2020.
PALHARES, D. Produção de hidrogênio por eletrólise alcalina da água e energia solar. [s.l.] Universidade Federal de Uberlândia, 29 ago. 2016.
PAVEL, C. C. et al. Highly Efficient Platinum Group Metal Free Based Membrane-Electrode Assembly for Anion Exchange Membrane Water Electrolysis. Angewandte Chemie International Edition, v. 53, n. 5, p. 1378–1381, 27 jan. 2014.
RAULS, E. et al. Favorable Start-Up behavior of polymer electrolyte membrane water electrolyzers. Applied Energy, v. 330, p. 120350, jan. 2023.
RIEGEL, H.; MITROVIC, J.; STEPHAN, K. Role of mass transfer on hydrogen evolution in aqueous media. Journal of Applied Electrochemistry, v. 28, n. 1, p. 10–17, 1997.
ROMMAL, H. E. G.; MORAN, P. J. Time‐Dependent Energy Efficiency Losses at Nickel Cathodes in Alkaline Water Electrolysis Systems. Journal of The Electrochemical Society, v. 132, n. 2, p. 325–329, 1 fev. 1985.
ROSSI, R. A. DA S. et al. Catalytic solar hydropyrolysis of the Chlamydomonas reinhardtii microalgae. Biomass and Bioenergy, v. 152, p. 106183, set. 2021.
SABA, S. M. et al. The investment costs of electrolysis – A comparison of cost studies from the past 30 years. International Journal of Hydrogen Energy, v. 43, n. 3, p. 1209–1223, jan. 2018a.
SABA, S. M. et al. The investment costs of electrolysis – A comparison of cost studies from the past 30 years. International Journal of Hydrogen Energy, v. 43, n. 3, p. 1209–1223, jan. 2018b.
SANTANA, J. C. C. et al. Economic and Environmental Assessment of Hydrogen Production from Brazilian Energy Grid. Energies, v. 16, n. 9, p. 3769, 28 abr. 2023.
SAPOUNTZI, F. M. et al. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Progress in Energy and Combustion Science, v. 58, p. 1–35, jan. 2017.
SCHALENBACH, M. et al. Pressurized PEM water electrolysis: Efficiency and gas crossover. International Journal of Hydrogen Energy, v. 38, n. 35, p. 14921–14933, nov. 2013a.
SCHALENBACH, M. et al. Pressurized PEM water electrolysis: Efficiency and gas crossover. International Journal of Hydrogen Energy, v. 38, n. 35, p. 14921–14933, nov. 2013b.
SILLERO, L. et al. A bibliometric analysis of the hydrogen production from dark fermentation. International Journal of Hydrogen Energy, v. 47, n. 64, p. 27397–27420, jul. 2022.
SRIDHAR, A. et al. Progress in the production of hydrogen energy from food waste: A bibliometric analysis. International Journal of Hydrogen Energy, v. 47, n. 62, p. 26326–26354, jul. 2022.
STOJIĆ, D. LJ. et al. Intermetallics as cathode materials in the electrolytic hydrogen production. International Journal of Hydrogen Energy, v. 30, n. 1, p. 21–28, jan. 2005.
URSUA, A.; GANDIA, L. M.; SANCHIS, P. Hydrogen Production From Water Electrolysis: Current Status and Future Trends. Proceedings of the IEEE, v. 100, n. 2, p. 410–426, fev. 2012.
VIDAS, L.; CASTRO, R. Recent Developments on Hydrogen Production Technologies: State-of-the-Art Review with a Focus on Green-Electrolysis. Applied Sciences, v. 11, n. 23, p. 11363, 1 dez. 2021.
YAN, W.; WANG, D.; BOTTE, G. G. Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation. Electrochimica Acta, v. 61, p. 25–30, fev. 2012.
ZENG, K.; ZHANG, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, v. 36, n. 3, p. 307–326, jun. 2010.
ZHAO, J. et al. Off-grid solar photovoltaic-alkaline electrolysis-metal hydrogen storage-fuel cell system: An investigation for application in eco-neighborhood in Ningbo, China. International Journal of Hydrogen Energy, v. 48, n. 50, p. 19172–19187, jun. 2023.
Copyright (c) 2024 Revista Gestão & Sustentabilidade
This work is licensed under a Creative Commons Attribution 4.0 International License.
-
O(s) autor(es) autoriza(m) a publicação do artigo na revista;
-
O(s) autor(es) atesta (m) que a contribuição é original e inédita e que não está em processo de avaliação em outra(s) revista(s);
-
A revista não se responsabiliza pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es);
-
É reservado aos editores o direito de proceder ajustes textuais e de adequação do artigo às normas da publicação;
-
Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Creative Commons Atribuição 4.0 Não Adaptada, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista