Perspectives on biogas production from microalgae for circular economy: a bibliometric analysis
DOI:
https://doi.org/10.36661/2596-142X.2025v7n1.15270Keywords:
Bibliometric analysis, Algal biomass, Energy fuelsAbstract
The growing global energy demand and the environmental impacts associated with fossil fuel use have driven the development of renewable alternatives, such as bioenergy. Microalgae stand out as a promising raw material for biogas production, aligning with circular economy principles. This study presents a bibliometric analysis of biogas production from microalgae. An exploratory review of 60 articles indexed in the Web of Science (WoS) database from 2015 to 2025, using the terms “microalgae,” “biogas,” and “anaerobic digestion,” with data processing performed using VOSviewer software. Results revealed a concentration of publications in India and a noticeable gap in Latin American and Brazilian research. The most prominent subject areas included energy fuels, environmental sciences, and biotechnology applied microbiology. Co-occurrence analysis identified 29 relevant keywords, with “biogas” and “microalgae” showing strong thematic links. The bibliometric mapping grouped studies into four thematic clusters: biogas production from microalgae, biomass production, environmental issues, and energy-related topics. Seven key articles were highlighted, demonstrating the potential of microalgae as a sustainable energy source, while also addressing technical challenges such as rigid cell walls, the need for pretreatment methods, and the advantages of co-digestion to improve methane yields. The findings suggest that, despite the technical and environmental potential, the integration between biotechnologies, circular economy, and public policies can broaden the prospects for the application of this technology. In this sense, the adoption of an interdisciplinary approach that links waste management, environmental regulation, and economic viability is essential to consolidate the use of microalgae as a sustainable bioenergy source.
Downloads
References
ABUSWEIREH, R. S.; RAJAMOHAN, N.; SONNE, C.; VASSEGHIAN, Y. Algae biogas production focusing on operating conditions and conversion mechanisms – A review. Heliyon, v. 9, p. e17757, 2023.https://10.1016/j.heliyon.2023.e17757
AMJITH, L. R.; BAVANISH, B. A review on biomass and wind as renewable energy for sustainable environment. Chemosphere, v. 293, p. 133579, 2022. https://doi.org/10.1016/j.chemosphere.2022.133579
ARASHIRO, L. T.; MONTERO, N.; FERRER, I.; ACIÉN, F. G.; GÓMEZ, C.; GARFÍ, M. Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Science of the Total Environment, v. 622–623, p. 1118–1130, 2018. https://doi.org/10.1016/j.scitotenv.2017.12.051
CHEN, H.; ZHOU, D.; LUO, G.; ZHANG, S.; CHEN, J. Macroalgae for biofuels production: Progress and perspectives. Renewable and Sustainable Energy Reviews, v. 47, p. 427–437, 2015. https://doi.org/10.1016/j.rser.2015.03.086
DAR, R. A.; PARMAR, M.; DAR, E. A.; SANI, R. K.; PHUTELA, U. G. Biomethanation of agricultural residues: Potential, limitations and possible solutions. Renewable and Sustainable Energy Reviews, v. 135, p. 110217, 2021. https://doi.org/10.1016/j.rser.2020.110217
KATIYAR, R. et al. Microalgae: An emerging source of energy based bio-products and a solution for environmental issues. Renewable and Sustainable Energy Reviews, v. 72, p. 1083-1093, 2017. https://doi.org/10.1016/j.rser.2016.10.028
KENDIR, E.; UGURLU, A. A comprehensive review on pretreatment of microalgae for biogas production. International Journal of Energy Research, v. 42, p. 3711–3731, 2018. https://doi.org/10.1002/er.4100
KHAN, A. A.; GUL, J.; NAQVI, S.R.; ALI, I.; FAROOQ, W.; LIAQAT, R.; ALMOHAMADI, H.; ŠTĚPANEC, L.; JUCHELKOVÁ, D. Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater. Chemosphere, v. 306, p. 135565, 2022. https://doi.org/10.1016/j.chemosphere.2022.135565
KUMAR, D.; SINGH, B. Algal biorefinery: An integrated approach for sustainable biodiesel production. Biomass and Bioenergy, v. 131, p. 105398, 2019. https://doi.org/10.1016/j.biombioe.2019.105398
KUMARI, P.; VARMA, A.K.; SHANKAR, R.; THAKUR, L.S.; MONDAL, P. Phycoremediation of wastewater by Chlorella pyrenoidosa and utilization of its biomass for biogas production. Journal of Environmental Chemical Engineering, v. 9, n. 1, p. 104974, 2021. https://doi.org/10.1016/j.jece.2020.104974
MENEZES, A. H. N.; DUARTE, F.R.; CARVALHO, L.O.R.; SOUZA, T.E.S. Metodologia científica: teoria e aplicação na educação a distância. Petrolina: Universidade Federal do Vale do São Francisco – UNIVASF, 2019.
RAHEEM, A.; WAN AZLINA, W. A. K. G.; TAUFIQ YAP, Y. H.; DANQUAH, M. K.; HARUN, R. Thermochemical conversion of microalgal biomass for biofuel production. Renewable and Sustainable Energy Reviews, v. 49, p. 990–999, 2015. https://doi.org/10.1016/j.rser.2015.04.186
SILVA, J. R.; OLIVEIRA, A. C. Aproveitamento energético de resíduos orgânicos no contexto da economia circular: uma revisão integrativa. Revista Brasileira de Gestão Ambiental e Sustentabilidade, v. 10, n. 20, p. 789–802, 2023. Disponível em: https://revista.ecogestaobrasil.net/v10n20/pdf/08.pdf. Acesso em: 30 jul. 2025.
UMAMAHESWARI, J.; SHANTHAKUMAR, S. Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. Reviews in Environmental Science and Biotechnology, v. 15, n. 2, p. 265–284, 2016. https://doi.org/10.1007/s11157-016-9397-7
WANG, S.; YERKEBULAN, M.; ABOMOHRA, A. E.; EL-KHODARY, S.; WANG, Q. Microalgae harvest influences the energy recovery: a case study on chemical flocculation of Scenedesmus obliquus for biodiesel and crude bio-oil production. Bioresource Technology, v. 286, p. 121371, 2019. https://doi.org/10.1016/j.biortech.2019.121371
WELFLE, A. J.; ALMENA, A.; ARSHAD, M. N.; BANKS, S. W.; BUTNAR, I.; CHONG, K. J.; COOPER, S. J. G.; DALY, H.; FREITES, S. G.; GÜLEÇ, F.; HARDACRE, C.; HOLLAND, R.; LAN, L.; LEE, C. S.; ROBERTSON, P.; ROWE, R.; SHEPHERD, A.; SKILLEN, N.; TEDESCO, S.; THORNLEY, P.; BARBARÁ, P. V.; WATSON, I.; WILLIAMS, O. S. A.; RÖDER, M. Sustainability of bioenergy – Mapping the risks & benefits to inform future bioenergy systems. Biomass and Bioenergy, v. 177, p. 106919, 2023. https://doi.org/10.1016/j.biombioe.2023.106919
WELFLE, A.; GILBERT, P.; THORNLEY, P. Securing a bioenergy future without imports. Energy Policy, v. 68, p. 1–14, 2014. http://dx.doi.org/10.1016/j.enpol.2013.11.079
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Gabriela dos Santos Castro, Leonardo Motta da Costa Silva, Luciani de Liz Souza, Jeane de Almeida do Rosário

This work is licensed under a Creative Commons Attribution 4.0 International License.
-
O(s) autor(es) autoriza(m) a publicação do artigo na revista;
-
O(s) autor(es) atesta (m) que a contribuição é original e inédita e que não está em processo de avaliação em outra(s) revista(s);
-
A revista não se responsabiliza pelas opiniões, ideias e conceitos emitidos nos textos, por serem de inteira responsabilidade de seu(s) autor(es);
-
É reservado aos editores o direito de proceder ajustes textuais e de adequação do artigo às normas da publicação;
-
Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Creative Commons Atribuição 4.0 Não Adaptada, que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista











